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1 Some Words At the Beginning

As the title goes: this is my notebook for Linear Programming(LP) in the
course SI152 at ShanghaiTech. Due to the schedule and plan of the course,
not all aspects of linear programming are covered(in fact we have ignored quite
a lot for the reason that LP is not as popular as other methods like gradient
descent in computer science). As a result, I will only record some key notes
prof. teaches in class, as well as some of my understandings of LP(thus this
essay is more useful as a function of review).

In addition, I strongly suggest reading this book: Introduction to Linear
Optimization[1], and I have learnt a lot from this book. Thus, I will directly
mention some contents within it.

2 Introduction

The first thing to consider is what does linear mean. Maybe we can take a look
at the general form of an optimization problem:

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, ..., m

hi(x) = 0, i = 1, ..., n

From my point of view, linear means that

f(ax+ by) = af(x) + bf(y)

for all related equations. And recall that linear operations are closely related to
matrices, we derive a general form for Linear Programming:

min
x

cTx

s.t. Ax = b

x ≥ 0

(1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm.
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However, problems that we encounter in real life will not simply be in the
standard form, which means that we have got to convert a problem into the
standard form. Typically, there are two methods

• Elimination of free variables: Given an unrestricted variable xj in a prob-
lem in general form, we replace it by x+

j − x−
j ,where x+

j and x−
j are new

variables on which we impose the sign constraints x+
j ≥ 0 and x−

j ≥ 0. The
underlying idea is that any real number can be written as the difference
of two nonnegative numbers.

• Elimination of inequality constraints: Given an inequality constraint of
the form

n∑
j=1

aijxj ≤ bi,

we introduce a new variable si and the standard form contains

n∑
j=1

aijxj + si = bi,

si ≥ 0.

Such a variable si is called a slack variable. Similarly, an inequality con-
straint

∑n
j=1 aijxj ≥ bi can be put in standard form by introducing a

surplus variable si and the constraints
∑n

j=1 aijxj − si = bi, si ≥ 0.

The above two methods indicate a very basic way of converting any problem
into the standard form. For more details and examples, please see book [1]
starting from page 5.

Strict inequality?

It would be easy to notice that x is required to be x ≥ 0, and what if the
constraint changes to x > 0? Well, the answer may become a bit more complex.
In Section 3 we will see that if the polyhedron(set of constraints) is nonempty
and bounded, the optimal solution is a vertex. If equality does not hold, we
cannot guarantee that the optimal solution(vertex) exists. As a result, what we
normally do is to add a small margin into the strict inequality, i.e. x ≥ ϵ, where
ϵ is extremely small. Of course this is wrong mathematically, but very practical
in real life.

3 Geometry of Linear Programming

It is suggested to look Chapter 2 in [1] for this part.
Only some of the key notes are recorded here.
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3.1 Polyhedron

Definition 3.1 A polyhedron is a set that can be described in
the form {x ∈ Rn|Ax ≥ b} , where A ∈ Rm×n, b ∈ Rm.

Notice that polyhedra are convex sets, and they are in fact constraints of
Linear Programming. And this also suggests that we do not consider strict
inequalities.

3.2 Extreme points, verteces and basic feasible solutions

Definition 3.2 Let P be a polyhedron. A vector x ∈ P is an
extreme point of P if we cannot find two vectors y, z ∈ P both
different from x, and scalarλ ∈ [0, 1], such that x = λy+(1−λ)z.

Definition 3.3 Let P be a polyhedron. A vector x ∈ P is a
vertex of P if there exists some c such that cTx < cT y for all y
satisfying y ∈ P and y ̸= x.

Definition 3.4 Consider a polyhedron P defined by linear equal-
ity and inequality constraints, and let x∗ be an element of Rn.

1. The vector x∗ is a basic solution if:

(a) All equality constraints are active;

(b) Out of the constraints that are active at x∗, there are
n of them that are linearly independent.

2. If x∗ is a basic solution that satisfies all of the constraints,
we say that it is a basic feasible solution(BFS).

All three concepts are equivalent in the context of Linear Programming.

Adjacent basic solutions

Two distinct basic solutions to a set of linear constraints in Rn are said to be
adjacent if we can find n − 1 linearly independent constraints that are active
at both of them. If two adjacent basic solutions are also feasible, then the line
segment that joins them is called an edge of the feasible set.

3.3 Something of polyhedron A

Recall in standard form 1, we have Ax = b. And not it’s time to discuss
something necessary of A ∈ Rm×n.

• We assume that A is in full rank, that is, we will think of it in a very
concise form without duplicate constraints.
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• We assume m < n. Otherwise, the polyhedron of this LP problem is
empty or contains only one vertex. Then what we need to do is to find
such vertex or report that the problem is infeasible.

3.4 Degeneracy

Definition 3.5 A basic solution x ∈ Rn is said to be degenerate
if more than n of the constraints are active at x.

A very easy way to understand this is to think of the situation where some
linear equalities also leads to xj = 0. And this will make Simplex methods
difficult to iterate. However, we will not consider degeneracy in the following
sections!

3.5 Optimality

Corollary 3.1 Every nonempty bounded polyhedron and every
nonempty polyhedron in standard form has at least one basic fea-
sible solution.

Corollary 3.2 Consider the linear programming problem of mini-
mizing cTx over a nonempty polyhedron. Then, either the optimal
cost is equal to −∞ or there exists an optimal solution.

4 Simplex Method

Also, please read Chapter 3 in [1].

4.1 General Idea

From Section 3, we know that optimal solutions are located at verteces, thus
we need to find out verteces(basic feasible solutions). Then it is the problem of
solving linear system Ax = b. Since there are more unknowns than equations in
A, we need to set some inequalities active, i.e. there are n−m of x to be zero.
In total, there are N =

(
n
m

)
possible choices, thus there are at most N verteces.

Well, up to now, a brute-force method can be found: iterate N BFS one by one
and find the minimum. However, this method is too naive and takes too much
time!

Can we be smarter? Yes, we can design a strategy to find the next BFS. To
be more specific, we can find a direction and search for the next adjacent BFS.
Then if a certain BFS satisfies some requirements, we can say that this is the
optimal one.

Suppose that we have selectedm out of n x to be zero, and the corresponding
basis matrix is B ∈ Mm with basis index set I = {B(1), ..., B(m)} Then rewrite
A = [B,N ], xT = [xB , 0]

T , cT = [cB , cN ]T with objective function

cTx = cTBxB
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and constraints
BxB = b ⇒ xB = B−1b

Consequently, we have obtained the first BFS x0 = [xB , 0]. In order to
move to the adjacent BFS, we define a direction d ∈ Rn = [dB , 0, ..., 1, ..., 0]

T

where the j-th entry in the non-basis index set to be 1 and elsewhere in the
non-basis index set to be 0 with a step-length θ ∈ R > 0. To satisfy the equality
constraints, we have

A(x+ θd) = b ⇒ Ad = 0 ⇒ BdB +Aj = 0 ⇒ dB = −B−1Aj

where Aj is the j-th column of N . Again, find the objective to be

cTx = [cB , ..., cj , ...]
T [xB + θdB , ..., θ, ...] = cTBxB + θ(cj + cTBdB)

Notice that we want to find the minimum objective, we want reduced cost
c̄j such that c̄j = cj + cTBdB to be negative. As a result, we normally choose
index j where cj < 0. In fact, we can prove further:

Theorem 4.1 Consider a basic feasible solution x associated with
a basis matrix B, and let c̄ be the corresponding vector of reduced
costs.

1. If c̄T = cT − cTBB
−1A ≥ 0, then x is optimal. a

2. If x is optimal and nondegenerate, then c̄ ≥ 0.

aFor any index i ∈ I, we have ci − cTBB−1Ai = ci − cTBei = 0, where ei is
a standard basis vector for Rm with only 1 on the i-th entry and elsewhere 0.

Consequently, we need to find the value for θ. Since costs decrease along the
direction d, it is desirable to move as far as possible.

• If dB ≥ 0, then we can set θ → +∞ (since xB+θdB is always nonnegative),
which indicates that the polyhedron is unbounded. And notice that the
current objective would be cTBxB + θc̄j → −∞.

• If di < 0 for some i, the constraint xi+θdi ≥ 0 becomes θ ≤ −xi/di. This
constraint on θ must be satisfied for every i with di < 0. Thus, the largest
possible value of θ is

θ∗ = min
{i|di<0}

(−xi

di
)

Recall that if xi is a nonbasic variable, then either xi is the entering
variable and di = 1, or else di = 0. In either case, di is nonnegative. Thus,
we only need to consider the basic variables and we have the equivalent
formula

θ∗ = min
{i=1,...,m|dB(i)<0}

(−
xB(i)

dB(i)
)

Note that θ∗ > 0, because xB(i) > 0 for all i, as a consequence of nonde-
generacy.

Up to now, we have complete a general process of Simplex method. A pseudo
code for this trivial implementation can be found at page 90 in [1].
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Why do we ignore degeneracy?

Let’s consider an index l ∈ I such that xl = 0. And if the l-th value of corre-
sponding direction dB(l) < 0, for any θ > 0, we will make xl = θdB(l) < 0. Thus
a failure in iteration! As a result, we will ignore such kind of situation.

4.2 Full Tableau

To make life easier, we can write down the linear programming problem into a
tableau, as the following:

−cTBxB c− cTBB
−1A

B−1b B−1A

or to be more specific:

−cTBxB 0 · · · 0 · · · 0 · · · cj · · ·
xB(1) 1

B−1Aj

...
. . .

xB(l) 1
...

. . .

xB(m) 1

Notice that when initializing the table, we must make B−1b > 0 (if nonde-
generate, else ≥ 0 is sufficient), otherwise the solution is infeasible. And we do
row operations based on the pivot row, say B(l), only the B(l)-th entry on the
zeroth row will be affected. Thus just as what we expected. For more details,
read pages 98-105 in [1]. And this is the typical method to remember for hand
calculations.

4.3 Complexity

Assume that there are n unknowns and m equations. Generally, the average
time complexity is within polynomial time and simplex algorithm performs quite
well in many real problems. However, the worst case of simplex is O(n22n), the
construction of the problem is [2]. In the worst case, we have to go through every
vertex, which will give

(
2n
n

)
choices (a lower bound and a upper bound can be

found at [3]). In sum, the worst case of simplex is the brute-force algorithm.

5 Duality

Also, please read Chapter 4 in [1].

The first time we faced the problem of duality was back in the course of Signal
and Systems. In fact, for most optimization problems, we can construct the
dual problems of the primal ones.
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5.1 A Trivial Visit to Lagrange Dual

Consider a general optimization problem with linear objective and constraints:

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, ..., m

hi(x) = 0, i = 1, ..., n

Construct the Lagrange dual function:

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

n∑
j=1

νjhj(x), λi ≥ 0

Define g(u) = inf
x
L(x, u) (u stands for λ, ν), and notice that

g(θa + (1− θ)b) = inf
x

L(x, θa + (1− θ)b)

= inf
x
[θL(x, a) + (1− θ)L(x, b)]

≥ inf
x
[θL(x, a)] + inf

x
[(1− θ)L(x, b)]

= θg(a) + (1− θ)g(b)

we can claim that g(u) is concave, thus exists a maximum value g(u∗).
Notice that L(x, λ, ν) ≤ f0(x) for every x, and if we define x∗ to be the

optimal solution(if exists) , we can find that

g(λ, ν) = inf
x
L(x, λ, ν) ≤ g(u∗) ≤ f0(x

∗) ≤ f0(x)

The aim of LP is to find the minimum value of the objective. By constructing
the Lagrange dual function, it seems that we have found a lower bound for the
objective, and also an upper bound for the dual function. And notice that the
objective is convex, we can draw something like the following:

duality gap

primal

dual

and if we are lucky enough to find the gap f0(x
∗)− g(u∗) = 0, we can say that

the two optimization problems are equivalent. And to be more specific, if the
gap is zero, we have to make

∑m
i=1 λifi(x) to zero.
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5.2 Duality for LP

Recall the standard form of LP:

min
x

cTx

s.t. Ax = b

−x ≤ 0

Construct the Lagrange dual as:

L(x, λ, ν) = cTx− λTx+ νT (b−Ax) = (cT − λT − νTA)x+ νT b

where λ ≥ 0, and notice that

inf
x
L(x, λ, ν) =

{
νT b, cT − λT − νTA = 0

−∞ otherwise

we can conclude the dual problem as:

max
ν

νT b

s.t. λT = cT − νTA ≥ 0

How to understand this dual problem?

We can find some nice explanations in [4]. Personally, I will give some expla-
nations of mine in later sections. And I do believe to fully answer this question
requires some knowledge of the concept of dual mathematically. I have men-
tioned that there are dual transformations in Signal and Systems, and their
ideas are quite similar as those here. In sum, duality is a universal property
just like symmetry.

Theorem

Theorem 5.1 (Weak duality) If x is a feasible solution to the
primal problem and p is a feasible solution to the dual problem,
then pT b ≤ cTx.

Theorem 5.2 (Strong duality) If a linear programming prob-
lem has an optimal solution, so does its dual, and the respective
optimal costs are equal.

Theorem 5.3 (Complementary slackness) Let x and p be
feasible solutions to the primal and the dual problem, respectively.
The vectors x and p are optimal solutions for the two respective
problems if and only if:

pi(a
T
i x− bi) = 0, ∀i ∈ {1, 2, ...,m},

(cj − pTAj)xj = 0, ∀j ∈ {1, 2, ..., n}.
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Let’s take a closer look at the complementary slackness. If we define ui =
pi(a

T
i x− bi) and vj = (cj − pTAj)xj , we will find that ui ≥ 0, vj ≥ 0, and most

importantly,

cTx− pT b =
∑
i

ui +
∑
j

vj ≥ 0

which vividly explains why these terms should be zero.
In fact there’s a more simple way to understand complementary slackness.

Recall the primal and the dual problem

min
x

cTx

s.t. Ax = b

x ≥ 0

max
p, s

pT b

s.t. AT p+ s = c

s ≥ 0

and assume that there is an optimal basic solution x∗ for primal problem, then
we also find p∗, s∗ such that the objective of dual problem reaches its optimal
value. Thus, we can find out

c = AT p∗ + s∗

b = Ax∗

which gives us
cTx− pT b = s∗x∗

notice that s, x ≥ 0, therefore, we can imply that if xj ̸= 0, then sj must be
zero, and vice versa!

5.3 Duality in Simplex Tableau

Let’s recall what’s the strategy of simplex method: we iterate through some
BFS with a right direction and step-length, starting from an initial BFS. This
requires selected basis matrix to satisfy two requirements:

B−1b ≥ 0 (2)

and
c = c− cTBB

−1A ≥ 0 (3)

Then from primal problem’s view, in each step, primal simplex requires
Equation 2 holds, means that in each iteration the solution must be feasible,
while dual simplex requires the solution to be optimal(3), since νTA ≤ c can be
interpreted as cTBB

−1A ≤ c. In other words, we make zeroth row to be satisfied
in primal simplex, and make zeroth column to be satisfied in dual simplex.
Notice that columns and rows are just the two basic elements of a matrix, which
makes me feel that any matrix is dual with respect to its transpose.

6 Sensitivity Analysis

Go and see Chapter 5.1 and 5.2 in [1], it is wonderful!
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7 Interior Point Method

I DIDN’T GET IT, I WAS JUST IN AWE.

At present, I can not really tell that I have understood this method. But I
would recommend some resources to be used: [5], [6]. And maybe I will update
this section later some day.
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