
BALM: Bundle Adjustment for Lidar Mapping [1]

Jinxi Xiao, Yi’ang Ju

7th May

1/40



Introduction

1 Introduction

2 Direct BA Formulation
Plane feature
Line feature
General view of the Loss function

3 Second Order Approximation
Derivative
Derive the second order approximation

4 Codes and Implementations

5 Rethink

6 Appendix

7 Reference

2/40



Introduction

Motivations

Odometry obtained from methods like ICP contains a certain degree
of errors. And when the errors get accumulated, we may observe a
drift in the trajectory.

As a result, we want to optimize a collection of key frames, both in
the respect of Lidar poses as well as feature points, just like Bundle
adjustment(BA) in visual SLAM.

And this variant is named as BALM.

3/40



Introduction

Difference between BALM and BA

Generally, for Lidar SLAM, exact point matching is infeasible.

Figure: Difference between BALM and BA

4/40



Introduction

Main Idea for BALM

1 It is most similar to multi-view registration.

2 To defining a metric that effectively evaluates the alignment quality
of sparse points from all scans and, in the meantime, allows efficient
optimization.

3 Use the geometric information of the point cloud, such as plane
features and line features.

5/40



Direct BA Formulation

1 Introduction

2 Direct BA Formulation
Plane feature
Line feature
General view of the Loss function

3 Second Order Approximation
Derivative
Derive the second order approximation

4 Codes and Implementations

5 Rethink

6 Appendix

7 Reference

6/40



Direct BA Formulation

Terminologies

There are M scans, and denote the poses of scans as
T = (T1, ...,TM), where Tj = (Rj , tj) ∈ SO(3)× R3.

Feature points correspond to the same feature(plane or line):
pfi (i = 1, ...,N). Suppose i-th feature point is drawn from the si -th
scan, where si ∈ {1, ...,M}.
All feature points can be convert to the global frame by

pi = Rsipfi + tsi , i = 1, ...,N

Denote q to be a point on the plane(line), and n to be the normal
vector of the plane(direction of the line).

7/40



Direct BA Formulation Plane feature

Loss function for a plane feature

min
T,n,q

1

N

N∑
i=1

(
nT (pi − q)

)2
s.t. Tj ∈ SO(3)× R3

n, q ∈ R3

∥n∥2 = 1

(1)

Figure: A plane feature

8/40



Direct BA Formulation Plane feature

Derive the solution

Does this optimization problem even have an optimal solution?

Assumption 1

It is similar to ICP algorithm. That is, there could be infinitely many
solutions, or exactly one solution. In the latter case, the local minimum
would be the global minimum.

Notice that q is not constraint, find the derivative of q

∂

∂q
= 0

⇒ 1

N

N∑
i=1

−2nnT (pi − q) = 0

⇒nnT
1

N

N∑
i=1

(pi − q) = 0

(2)

9/40



Direct BA Formulation Plane feature

Derive the solution

It would be impossible to solve (2) if we have got to consider all the
variables. But luckily,

q = p̄ =
1

N

N∑
i=1

pi (3)

is always a solution to (2).
Also notice that any point on the plane can be chosen, so we should have
infinitely many solutions to q in theory.

Assumption 2

Although the point can move freely on the plane, we assume that the final
loss function would be the same no matter what q is.

As a result, we derive a solution for q in (3).

10/40



Direct BA Formulation Plane feature

Derive the solution

Plug (3) to (1), we can rewrite (1) as:

min
T,n

1

N

N∑
i=1

nT (pi − p̄)(pi − p̄)Tn = nTAn (4)

where

A =
1

N

N∑
i=1

(pi − p̄)(pi − p̄)T (5)

since A is real symmetric and PSD, we can find the minimum value to be
the minimum eigenvalue1 and n to be the corresponding eigenvector.
Thus, we have found a simpler representation of (1):

min
T

λ3(A) (6)

1proof see here
11/40

https://zhuanlan.zhihu.com/p/651206427


Direct BA Formulation Line feature

Loss function for a line feature

min
T,n,q

1

N

N∑
i=1

∥
(
I − nnT

)
(pi − q)∥22

s.t. T ∈ SO(3)× R3

n, q ∈ R3

∥n∥2 = 1

(7)

Figure: A line feature

12/40



Direct BA Formulation Line feature

Derive the solution

Similarly, we can find one solution for q the same as (3). Define
xi = pi − p̄ and rewrite (7) to:

min
T,n

1

N

N∑
i=1

xTi

(
I − nnT

)
xi

= min
T,n

1

N

N∑
i=1

xTi xi − xTi nn
Txi

= min
T,n

1

N

N∑
i=1

xTi xi − nTxix
T
i n

= min
T,n

(
1

N

N∑
i=1

xTi xi

)
− nTAn

(8)

13/40



Direct BA Formulation Line feature

Derive the solution

Notice that
tr(xix

T
i ) = xTi xi

We can conclude (7) to

min
T

tr(A)− λ1(A) = min
T

λ2(A) + λ3(A) (9)

14/40



Direct BA Formulation General view of the Loss function

The loss function

Now BALM is equivalent to minimizing

λk(p(T)) (10)

where p = [pT1 · · ·pTN ]T is the vector of all feature points corresponding to
the same feature.

15/40



Direct BA Formulation General view of the Loss function

A geometric view

Eigenvalues of the covariance denotes the trend of spread of the data. For
a plane feature, it has a degree of freedom of 2, which corresponds to λ1

and λ2, thus we only need to minimize λ3. The same applies to line
features.

Figure: A visual explanation of eigenvalues of the covariance.2

2Figure is from here
16/40

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/


Second Order Approximation

1 Introduction

2 Direct BA Formulation
Plane feature
Line feature
General view of the Loss function

3 Second Order Approximation
Derivative
Derive the second order approximation

4 Codes and Implementations

5 Rethink

6 Appendix

7 Reference

17/40



Second Order Approximation Derivative

First-order derivative

Theorem

For a group of points, pi (i = 1, . . . ,N) and the covariance matrix A
defined in (5). Assume A has eigenvalues λk corresponding to
eigenvectors uk (k = 1, 2, 3), then

∂λk

∂pi
=

2

N
(pi − p̄)Tuku

T
k , (11)

where the p̄ is the average of the N points as in (3).

18/40



Second Order Approximation Derivative

Second-order derivative

Theorem

If λi ̸= λk when i ̸= k, then

∂2λk

∂pj∂pi
=



2

N

(
N − 1

N
uku

T
k + uk

(
pi − p̄

)T
UF

pj
k

+UF
pj
k

(
uTk (pi − p̄)

))
, i = j

2

N

(
− 1

N
uku

T
k + uk

(
pi − p̄

)T
UF

pj
k

+UF
pj
k

(
uTk (pi − p̄)

))
, i ̸= j

(12)

19/40



Second Order Approximation Derivative

Second-order derivative

Theorem

where

F
Pj

k =

F
Pj

1,k

F
Pj

2,k

F
Pj

3,k

 ∈ R3×3, U =
[
u1 u2 u3

]
,

F
pj
m,n =


(pj − p̄)T

N(λn − λm)
(umuTn + unuTm), m ̸= n

01×3 ,m = n

What if λi = λk for i ̸= k ?

20/40



Second Order Approximation Derive the second order approximation

Derive the second order approximation

Approximate the cost function (10) by its second order approximation as:

λk(p+ δp) ≈ λk(p) + J(p)δp+
1

2
δpTH(p)δp (13)

where J(p) is the Jacobian matrix with i-th elements in (11) and H(p) is
the Hessian matrix with i-th row, j-th column elements in (12).
Recall that the point vector p is further dependent on the scan poses.

Perturbing a pose Tj in its tangent plane δTj =
[
ϕT
j δtTj

]T
using the ⊞

operation defined in [2], we have

Tj = (Rj , tj); Tj ⊞ δTj = (Rj exp
(
ϕ∧
j

)
, tj + δtj) (14)

and

pi = Rsi exp(ϕ
∧
si
)pfi + tsi ;

δpi
δTsi

=
[
−Rsi (pfi )

∧ I
]

(15)

21/40



Second Order Approximation Derive the second order approximation

Derive the second order approximation

D =
δp

δT
=


...

· · · Dij · · ·
...

 ∈ R3N×6M (16)

Dij =

{
δpi
δTsi

for j = si ∈ {1, . . . ,M}
03×6 for else

(17)

λk(T⊞ δT) ≈ λk(T) + JD︸︷︷︸
J̄

δT+
1

2
δTT DTHD︸ ︷︷ ︸

H̄

δT (18)

Thus using Levenberg-Marquardt to solve

(H̄(T) + µI )δT∗ = −J̄(T)T (19)

22/40



Codes and Implementations

1 Introduction

2 Direct BA Formulation
Plane feature
Line feature
General view of the Loss function

3 Second Order Approximation
Derivative
Derive the second order approximation

4 Codes and Implementations

5 Rethink

6 Appendix

7 Reference

23/40



Codes and Implementations

Codes and Implementations

Some Engineering Techniques in BALM:

Techniques for feature extraction

Adaptive voxelization

BALM with LOAM[3] as frontend

24/40



Codes and Implementations

Techniques for feature extraction

BALM uses improved feature extraction method of LOAM, which includes:

Filtering out excessively close points

Assigning scan ID(VFov angle) for each point

Extract edge points and planar points based on smoothness of local
surface(curvature)

Evenly distribution of feature points by separating scan into 4
sub-regions

Skip points on parallel lines and in occluded regions

25/40



Codes and Implementations

Adaptive voxelization

Better than full Kd-tree under scene with large planes or long
edges(early termination)

Repeatedly voxelize the 3D space from a default size

If all feature points (from all scans) in the current voxel does not lie
on the same plane or edge, breaks it into eight octants unless reaches
minimal size(0.125m)

26/40



Codes and Implementations

Adaptive voxelization

To reduce the depth of the octree, use a set of octrees indexed by a
Hash table

When searching for feature correspondences, only check feature
points in nearby voxels

27/40



Codes and Implementations

BALM with LOAM as frontend

Adaptive voxel map is used in odometry to speedup the matching
process.

Points are searched with respect to the voxel it lies in and added to
the leaf node of the corresponding octree.

28/40



Codes and Implementations

BALM with LOAM as frontend

After pushing a certain number of new scans to the voxel map, a
map-refinement is triggered: two voxel maps form a local BA on a
sliding window of lidar poses.

29/40



Codes and Implementations

Tests on datasets

Tested on Stevens-VLP16-Dataset, BALM shows lower drift on z-axis.

30/40



Rethink

1 Introduction

2 Direct BA Formulation
Plane feature
Line feature
General view of the Loss function

3 Second Order Approximation
Derivative
Derive the second order approximation

4 Codes and Implementations

5 Rethink

6 Appendix

7 Reference

31/40



Rethink

Are we actually optimizing the 3D points?

Maybe Not

Different from visual SLAM, we have direct depth info. And once we
have the pose of the lidar, 3D points are fixed.

Recall the loss function (10), which only includes T as the
optimization variable, thus we are only optimizing lidar poses.

”It is most similar to multi-view registration.”

32/40



Rethink

Why not use loss function in LOAM?

line distance:

dE =

∣∣∣(X̃ L
(k+1,i) − X̄ L

(k,j))× (X̃ L
(k+1,i) − X̄ L

(k,l))
∣∣∣∣∣∣X̄ L

(k,j) − X̄ L
(k,l)

∣∣∣ (20)

plane distance:

dH =

∣∣∣∣∣ (X̃ L
(k+1,i) − X̄ L

(k,j))

((X̄ L
(k,j) − X̄ L

(k,l))× (X̄ L
(k,j) − X̄ L

(k,m)))

∣∣∣∣∣∣∣∣(X̄ L
(k,j) − X̄ L

(k,l))× (X̄ L
(k,j) − X̄ L

(k,m))
∣∣∣ (21)

33/40



Rethink

Why not use loss function in LOAM?

Eigenvalues of the covariance has great properties, and they are
important in the step of building the voxel map.

Loss function in LOAM are designed for calculating the relative
transformation between successive frames, which is mainly used for
odometry part. And line distance requires two points on the line while
plane distance require three points.

34/40



Rethink

Why not use loss function in LOAM?

In class discussion
Prof. mentions one thing, it is that when a loop closure occurs, we will
perform a pose graph optimization at first. Then the whole map may be
changed, including the feature points. As a result, we may need to build
the voxel map once again. However, if we have a explicit(or implicit, to be
honest I still cannot fully understand this) expression for BA, may be we
can move the voxel map along with those feature points, thus save quite a
lot of time on building the map.
Summary:
This discussion is highly related to the full SLAM system. In order to fully
understand, we may need to write one ourselves.

35/40



Rethink

Excessive time used in solving BA may cause crashing

When adapted to velodyne-64 datasets, may crash in real-time frame
rate.

Slower down ros bag play rate can help, but still crash after some
time.

36/40



Rethink

Take away home messages

Explore eigenvalues of the covariance matrix of point clouds.

DIMENSIONALITY BASED SCALE SELECTION IN 3D LIDAR
POINT CLOUDS[4]: use eigenvalues to find the most suitable voxel
size.
Self-Supervised Depth Correction of Lidar Measurements From Map
Consistency Loss[5]: use eigenvalues as the loss function of the neural
network.

Build a more structured map(voxel map) to speed up the process.

37/40



Appendix

1 Introduction

2 Direct BA Formulation
Plane feature
Line feature
General view of the Loss function

3 Second Order Approximation
Derivative
Derive the second order approximation

4 Codes and Implementations

5 Rethink

6 Appendix

7 Reference

38/40



Appendix

Another proof for First-order derivative

Notice that

A = (
1

N

N∑
i=1

pip
T
i )− p̄p̄T

we can conclude that

∂A

∂xi
=

1

N

2(xi − x) yi − y zi − z
yi − y
zi − z

 (22)

as a result

∂λk

∂xi
=

2

N

 u2k1
uk1uk2
uk1uk3

 ·

xi − x
yi − y
zi − z

 (23)

and finally
∂λk

∂pi
= uTk

∂A

∂pi
uk =

2

N
uku

T
k (pi − p̄) ∈ R3 (24)

39/40



Reference

1 Introduction

2 Direct BA Formulation
Plane feature
Line feature
General view of the Loss function

3 Second Order Approximation
Derivative
Derive the second order approximation

4 Codes and Implementations

5 Rethink

6 Appendix

7 Reference

40/40



Reference

Z. Liu and F. Zhang, “Balm: Bundle adjustment for lidar mapping,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3184–3191,
2021.

C. Hertzberg, R. Wagner, U. Frese, and L. Schröder, “Integrating
generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14,
p. 57–77, Jan. 2013.

J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in
real-time,” in Robotics: Science and Systems, 2014.

J. Demantké, C. Mallet, N. David, and B. Vallet, “Dimensionality
based scale selection in 3d lidar point clouds,” ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 3812, pp. 97–102, 2012.

R. Agishev, T. Peťŕıček, and K. Zimmermann, “Self-supervised depth
correction of lidar measurements from map consistency loss,” IEEE
Robotics and Automation Letters, vol. 8, no. 8, pp. 4681–4688, 2023.

40/40


	Introduction
	Direct BA Formulation
	Plane feature
	Line feature
	General view of the Loss function

	Second Order Approximation
	Derivative
	Derive the second order approximation

	Codes and Implementations
	Rethink
	Appendix
	Reference

