Matrix Basis


This blog is only used as a reminder.

Look for https://si231.sist.shanghaitech.edu.cn/ and https://github.com/xiaojxkevin/Linear-Algebra-1-fall23 for more details

Notations and Conventions

Trace

  1. \[tr(A^T) = tr(A)\]
  2. \[tr(A+B) = tr(A) + tr(B)\]
  3. \[tr(AB) = tr(BA)\]
    • \[tr(xy^T) = x^Ty\]
    • \[tr(ABC) = tr(BCA) = tr(CAB)\]

Band matrices

\(:=\) A matrix \(A \in \mathbb{R}^{n\times n}\) is said to be a band matrix if all matrix elements are zero outside a diagonal ordered band, i.e.

\[a_{ij} = 0 \quad \text{if} \quad i > j + p \ \text{or} \ j > i + q\]

where \(p, q \geq 0\)

Toeplitz matrices

\(:=\) matrices with constant diagonals (may not be square)

\[A=\begin{bmatrix} a_{0} & a_{-1} & a_{-2} & \cdots & \cdots & a_{-( n-1)}\\ a_{1} & a_{0} & \ddots & \ddots & & \vdots \\ a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & a_{1} & \ddots & a_{-1} & a_{-2}\\ \vdots & & \ddots & a_{1} & a_{0} & a_{-1}\\ a_{n-1} & \cdots & \cdots & a_{2} & a_{1} & a_{0} \end{bmatrix}\]

Involutory matrices

\(:=\) matrix \(A\) is involutory if and only if \(A^2=I\)

Idempotent matrices

\(:=\) matrix \(A\) is idempotent if and only if \(A^2=A\)

Rank

  1. \[rank(A) = rank(A^T) = rank(A^TA)\]
  2. \(rank(AB) \leq \min\{rank(A), rank(B)\}\). And the equality holds when \(A\) has full row rank or \(B\) has full column rank.
  3. For \(A \in \mathbb{R}^{m\times p}\) and \(B \in \mathbb{R}^{p\times n}\), \(rank(AB) \geq rank(A) + rank(B) - n\)
  4. \(A\) is said to have low rank when its rank is significantly less than the maximum rank possible for the matrix.

Orthogonal

A matrix is said to be orthogonal(unitary) if it is real(complex), square and columns are orthonormal.

Permutation matrix

\(:=\) \(Q\) has exactly one element equal to 1 in each row and each column.

As a result, \(Q^TQ=I\) since

\[[Q^TQ]_{ij} = \sum_{k=1}^n [Q^T]_{ik}[Q]_{kj} = \sum_{k=1}^n [Q^T]_{ki}[Q]_{kj} = \begin{cases} 1, & i = j\\ 0, & \text{otherwise} \end{cases}\]

Multiplication

Define \(A \in \mathbb{R}^{m\times p}\) and \(B \in \mathbb{R}^{p\times n}\), \(AB\) is equivalent to

  1. Performing column combinations based on columns of \(A\) with elements in the column of \(B\) as coefficients.
  2. Performing row combinations based on rows of \(B\) with elements in the row of \(A\) as coefficients.
\[\begin{array}{l} AB=A\begin{bmatrix} B_{1} & \dotsc & B_{n} \end{bmatrix} =\begin{bmatrix} \sum _{j=1}^{p} B_{j1} A_{j} & \cdots & \sum _{j=1}^{p} B_{jn} A_{j} \end{bmatrix}\\ AB=\begin{bmatrix} a_{1}^{T} B\\ \vdots \\ a_{m}^{T} B \end{bmatrix} =\begin{bmatrix} \sum _{i=1}^{p} a_{1i} b_{i}^{T}\\ \vdots \\ \sum _{i=1}^{p} a_{mi} b_{i}^{T} \end{bmatrix}\\ AB\ =\ \begin{bmatrix} a_{1}^{T}\\ \vdots \\ a_{m}^{T} \end{bmatrix}\begin{bmatrix} B_{1} & \dotsc & B_{n} \end{bmatrix}\\ AB\ =\ \sum _{i=1}^{p} Ae_{i} e_{i}^{T} B=\sum _{i=1}^{p} A_{i} b_{i}^{T} \end{array}\]

Schur complement

Let

\[M\ =\ \begin{bmatrix} A & B\\ C & D \end{bmatrix}\]

where \(A\in \mathbb{R}^{m\times m}, B\in \mathbb{R}^{m\times n}, C\in\mathbb{R}^{n\times m}\) and \(D\in \mathbb{R}^{n\times n}\).

  1. If \(A\) is invertible, then the Schur complement of \(A\) in \(M\) is defined by

    \[S_A = D - CA^{-1}B\]

    then

    \[M=\ \begin{bmatrix} I & 0\\ CA^{-1} & I \end{bmatrix} \ \begin{bmatrix} A & 0\\ 0 & S_A \end{bmatrix} \ \begin{bmatrix} I & A^{-1} B\\ 0 & I \end{bmatrix}\]
  2. If \(D\) is invertible, then the Schur complement of \(D\) in \(M\) is defined by

    \[S_D = A - BD^{-1}C\]

    then

    \[M=\ \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \ \begin{bmatrix} S_D & 0\\ 0 & D \end{bmatrix} \ \begin{bmatrix} I & 0\\ D^{-1}C & I \end{bmatrix}\]