Matrix Basis
This blog is only used as a reminder.
Look for https://si231.sist.shanghaitech.edu.cn/ and https://github.com/xiaojxkevin/Linear-Algebra-1-fall23 for more details
Notations and Conventions
Trace
- \[tr(A^T) = tr(A)\]
- \[tr(A+B) = tr(A) + tr(B)\]
- \[tr(AB) = tr(BA)\]
- \[tr(xy^T) = x^Ty\]
- \[tr(ABC) = tr(BCA) = tr(CAB)\]
Band matrices
\(:=\) A matrix \(A \in \mathbb{R}^{n\times n}\) is said to be a band matrix if all matrix elements are zero outside a diagonal ordered band, i.e.
\[a_{ij} = 0 \quad \text{if} \quad i > j + p \ \text{or} \ j > i + q\]where \(p, q \geq 0\)
Toeplitz matrices
\(:=\) matrices with constant diagonals (may not be square)
\[A=\begin{bmatrix} a_{0} & a_{-1} & a_{-2} & \cdots & \cdots & a_{-( n-1)}\\ a_{1} & a_{0} & \ddots & \ddots & & \vdots \\ a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & a_{1} & \ddots & a_{-1} & a_{-2}\\ \vdots & & \ddots & a_{1} & a_{0} & a_{-1}\\ a_{n-1} & \cdots & \cdots & a_{2} & a_{1} & a_{0} \end{bmatrix}\]Involutory matrices
\(:=\) matrix \(A\) is involutory if and only if \(A^2=I\)
Idempotent matrices
\(:=\) matrix \(A\) is idempotent if and only if \(A^2=A\)
Rank
- \[rank(A) = rank(A^T) = rank(A^TA)\]
- \(rank(AB) \leq \min\{rank(A), rank(B)\}\). And the equality holds when \(A\) has full row rank or \(B\) has full column rank.
- For \(A \in \mathbb{R}^{m\times p}\) and \(B \in \mathbb{R}^{p\times n}\), \(rank(AB) \geq rank(A) + rank(B) - n\)
- \(A\) is said to have low rank when its rank is significantly less than the maximum rank possible for the matrix.
Orthogonal
A matrix is said to be orthogonal(unitary) if it is real(complex), square and columns are orthonormal.
Permutation matrix
\(:=\) \(Q\) has exactly one element equal to 1 in each row and each column.
As a result, \(Q^TQ=I\) since
\[[Q^TQ]_{ij} = \sum_{k=1}^n [Q^T]_{ik}[Q]_{kj} = \sum_{k=1}^n [Q^T]_{ki}[Q]_{kj} = \begin{cases} 1, & i = j\\ 0, & \text{otherwise} \end{cases}\]Multiplication
Define \(A \in \mathbb{R}^{m\times p}\) and \(B \in \mathbb{R}^{p\times n}\), \(AB\) is equivalent to
- Performing column combinations based on columns of \(A\) with elements in the column of \(B\) as coefficients.
- Performing row combinations based on rows of \(B\) with elements in the row of \(A\) as coefficients.
Schur complement
Let
\[M\ =\ \begin{bmatrix} A & B\\ C & D \end{bmatrix}\]where \(A\in \mathbb{R}^{m\times m}, B\in \mathbb{R}^{m\times n}, C\in\mathbb{R}^{n\times m}\) and \(D\in \mathbb{R}^{n\times n}\).
-
If \(A\) is invertible, then the Schur complement of \(A\) in \(M\) is defined by
\[S_A = D - CA^{-1}B\]then
\[M=\ \begin{bmatrix} I & 0\\ CA^{-1} & I \end{bmatrix} \ \begin{bmatrix} A & 0\\ 0 & S_A \end{bmatrix} \ \begin{bmatrix} I & A^{-1} B\\ 0 & I \end{bmatrix}\] -
If \(D\) is invertible, then the Schur complement of \(D\) in \(M\) is defined by
\[S_D = A - BD^{-1}C\]then
\[M=\ \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \ \begin{bmatrix} S_D & 0\\ 0 & D \end{bmatrix} \ \begin{bmatrix} I & 0\\ D^{-1}C & I \end{bmatrix}\]